THE UNITED REPUBLIC OF TANZANIA

PRESIDENT’S OFFICE,
PUBLIC SERVICE MANAGEMENT

e-GOVERNMENT AGENCY

e-GOVERNMENT INFRASTRUCTURE ARCHITECTURE –
STANDARDS AND TECHNICAL GUIDELINES

Document Number eGA/EXT/IRA/001

Issued by e-Government Agency - November 2017
Table of Contents

1. **OVERVIEW** ..3
 1.1. Introduction ... 3
 1.2. Rationale .. 4
 1.3. Purpose .. 4
 1.4. Scope ... 4

2. **E-GOVERNMENT INFRASTRUCTURE ARCHITECTURE**5
 2.1 eGovernment Infrastructure Architecture Reference Framework 5
 2.2 e-Government Infrastructure Architecture Standards 15
 2.3 e-Government Infrastructure Architecture Technical Guidelines 18

3. **IMPLEMENTATION, REVIEW AND ENFORCEMENT**24

4. **GLOSSARY AND ACRONYMS** ...24
 4.1. Glossary ... 24
 4.2. Acronyms ... 24

5. **RELATED DOCUMENTS** ..25

6. **DOCUMENT CONTROL** ..26

APPENDIX ...27
1.0 OVERVIEW

1.1. Introduction

The e-Government Agency (eGA) is established under the Executive Agencies Act No.30, 1997, Cap. 245 as a semi-autonomous Institution under President’s Office Public Service Management. eGA is charged with the mandate of providing coordination, oversight and provision of e-Government initiatives and enforcement of e-Government standards to Public Institutions. In executing its duties, eGA shall implement and maintain coordinated government operations for Information and Communication Technology (ICT) that include the formulation of standards and guidelines to effectuate the purposes of the Agency.

To realize the vision of e-Government in Tanzania and successfully implement e-Government Strategy, it is of paramount importance that “e-Government Standards and Guidelines” are formulated. The e-Government Standards and Guidelines’ aim is to assist in the delivery of more consistent and cohesive services to citizen and support the more cost effective delivery of ICT services by Government. A worldwide agreeable practice for conducting Government wide e-Government analysis, design, planning and implementation, using a holistic approach at all times, for the successful development and execution of e-Government Strategy is known as “e-Government Enterprise Architecture”. The e-Government Standards and Guidelines Structure is hereby designed to cover most requirements of e-Government Enterprise Architecture. This means that e-Government Enterprise Architecture is incorporated in “e-Government Standards & Guidelines”.

Management of e-Government Standards and Guidelines requires categorisation. There are nine categories/areas covering all aspects of e-Government. The seventh area is e-Government Infrastructure Architecture. The Infrastructure Architecture focuses on servers, workstations, storage and network infrastructure, software licensing, ICT vendor management, manpower and service support aspects of the Public Institutions. Design of infrastructure architecture adheres to the overarching technology infrastructure architecture principles (e.g. ICT infrastructure procedures, Quality of Service, ICT service delivery and support) and Service Platform, Storage and Infrastructure. The Infrastructure Architecture Standards and Technical Guidelines document has been derived from the e-Government Enterprise Architecture as referred in e-Government Architecture Vision - Standards and Technical Guidelines (eGA/EXT/AVS/001).
1.2. Rationale
Infrastructure Architecture aims to develop a structured, standardized, and consolidated set of infrastructure services that optimally support business processes and applications.

1.3. Purpose
In line with the above rationale, Infrastructure Architecture prevents overlapping and diversity of services, and thus reducing the complexity of managed services and life-cycle management. Moreover, with the standardization of infrastructure it allows Public Institutions to produce greater flexibility bottom-up, makes it easier to carry out expansions, changes and replacements in technology. Finally this will ensure that the defined Infrastructure Architecture Standards and Technical Guidelines are adopted across the Public Institutions.

1.4. Scope
This document applies to all Public Institutions and involved third parties (suppliers and contractors). The Public Institution Accounting Officer (Head of Institution), Head of ICT Departments, Application Developers, Security Officers, Application Architects, Network and Infrastructure Engineers shall be responsible for ensuring the effective implementation of these specific standards and technical guidelines associated with Infrastructure Architecture within their respective Institutions.
2.0 e-E-GOVERNMENT INFRASTRUCTURE ARCHITECTURE

2.1. e-Government Infrastructure Architecture Reference Framework

The Technical Reference Model (TRM) supports and enables the delivery of Application Reference Model service components and capabilities and provides a foundation to advance the re-use and standardization of technology and service components from a government-wide perspective. Aligning ICT capital investments to the TRM leverages a common, standardized vocabulary allowing cross departmental discovery, collaboration, and interoperability. Benefits from economies of scale will be obtained from identification and re-using the best solutions and technologies to support business functions, missions and target architecture. The TRM will continue to evolve with the emergence of new technologies and standards.

The TRM has been structured hierarchically as:

i. Service Area – Each Service Area aggregates the standards and technologies into a lower-level functional area. Each Service Area consists of multiple Service Categories and Service Standards.

ii. Service Category – Each Service Category classifies lower levels of technologies and standards with respect to the business or technology function they serve. In turn each Service Category is comprised of one or more service standards.

iii. Service Standards – They define the standards and technologies that support a Service Category. To support Public Institutions mapping into the TRM, many of the Service Standards provide illustrative specifications or technologies as examples. The proposed TRM for Government is depicted in Figure I:

![Technical Reference Model](image)

Figure I: Technical Reference Model

- **Access Channel**
 - HTTP Proxy
 - WAP Gateway
 - Web access standards (W3C)
 - Web services (e.g., SOAP)
 - Collaboration & Communications (Social networking services, IM, VoIP, SMS, email, social)

- **Delivery Channel**
 - Interface
 - Protocol
 - Control
 - Security

- **Presentation Interface**
 - Static design (HTML, CSS), Dynamic, Secure Site Display (ASP, JSP)
 - User Interface/Interaction
 - Web Interface (JAVA, JSP, Java Servlets, etc.)
 - User Personalization

- **Interconnection**
 - Enterprise Level Network
 - Application Layer Protocols
 - Transport Layer Protocols
 - Internet Layer Protocols

Service Area
- Process Integration
- Application/Service Integration
- Data Integration
- External Integration

Service Category
- Business Services Components
- Data Management
- BI & Reporting
- Security Management

Service Standards
- Database / Storage
- Platform / Delivery Servers
- Hardware Infrastructure
- Software Engineering

Business Services Components
- Line of Business Consumer Applications
- Commercial Applications
- Business Utilization
- Revenue Components

Data Management
- Data Connectivity (ODBC, ODBC)
- Data Access (Oracle, ODBC)
- Data analysis (OLAP), data preparation, data cleaning, data processing

BI & Reporting
- BI Tools & Standards
- Reporting Tools & Standards
- Business Intelligence

Security Management
- Access Management
- Identity Management
- Authentication
- Authorization and identity
- Single Sign-on Identity Management

Database / Storage
- Structured Data Storage (ODBC)
- Unstructured Data Storage (CSV, XML, etc.)
- Storage Devices (NAS, SAN)

Platform / Delivery Servers
- Unix Server
- Application Servers
- Database Servers
- Content Servers
- Email Servers
- Directory Services

Hardware Infrastructure
- Server Configuration / Licenses
- Embedded Technology Devices
- Proven Hardware
- Storage Area Network
- Local Area Network
- Network Devices / Standards

Software Engineering
- Programming Language for Application Development
- Application Development Environment
- Application Development Framework
- Configuration Management Software
- DoIT
Deriving from the TRM, the recommended Infrastructure Architecture Framework is depicted below.

![Infrastructure Reference Architecture Framework](image)

Figure I: Technical Reference Model

The Infrastructure Reference Architecture frameworks describes standards and guidelines for server, workstation, storage and network infrastructure, software licensing, ICT vendor management, manpower and service support aspects.

2.1.1 External Access, Exchange and Delivery of Service Components

For standards and specifications to support external access, exchange and delivery of Service Components or capabilities, Table I is the reference framework.

Table I: Standards and specifications to support external access, exchange and delivery of service components or capabilities

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Service Component</th>
<th>Service Component Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Channels</td>
<td>i. Web browser</td>
<td>i. An access channel defines the interface between an application and its users, whether it is a browser, smart phone, tablet or other medium.</td>
</tr>
<tr>
<td></td>
<td>ii. Web access standards (WCAG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Mobile devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Collaboration and communications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Telephony</td>
<td></td>
</tr>
</tbody>
</table>

External Access Channels

i. Web browser
ii. Web access standards (WCAG)
iii. Mobile devices
iv. Collaboration and communications
v. Telephony
Delivery Channels

1. Internet
2. Intranet
3. Virtual Private Network

Interconnection

1. Enterprise Level IP Network
2. Application Layer Protocols
3. Transport Layer Protocols
4. Internet Layer Protocols

- (IE), Mozilla, Firefox, and Google Chrome.
- Web access standards – Examples includes WCAG by W3C (web accessibility guidelines), ISO 9241-151:2008 Guidance on World Wide Web user interfaces, etc.
- Mobile devices – Examples include smart phones and tablets etc.
- Collaboration and communications – Examples includes social networking, Short Message Service (SMS), Interactive Voice Response (IVR), Voice over Internet Protocol (VoIP), Kiosks, Emails etc.

- VPN – The use of public telecommunication infrastructure to connect Public Institutions and entities together, maintaining privacy through the use of a tunnelling protocol and security procedures.
- The Internet standards as defined by the Internet Engineering Task Force (IETF).

- Enterprise Level IP Network such as IPv6.
- Application layer protocols such as DNS, DHCP, FTP/FTPS, HTTP/HTTPS, IMAP, IRC, LDAP, MIME, SNMP, POP3, RIPv2, SMTP, SOAP, SSH, Telnet etc.
2.1.2. Interfacing with Service Components

During interfacing both internally and externally with a service component, Table II is the reference framework.

Table II: Internally and externally interfacing with service component standards.

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Service Component</th>
<th>Service Component Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Integration</td>
<td>i. BPM</td>
<td>i. Business Process Notation (BPMN) 2.0, Business Process Execution Language (BPEL), Business Activity Monitoring (BAM)</td>
</tr>
<tr>
<td></td>
<td>ii. Workflow engine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Rule engine</td>
<td></td>
</tr>
<tr>
<td>Application / Service</td>
<td>i. Enterprise Application Integration Middleware</td>
<td>i. Message oriented middleware – (IBMMQ, MSMQ, JMS, JMX, for Monitor and Optimise</td>
</tr>
<tr>
<td></td>
<td>ii. Enterprise Service Bus</td>
<td>ii. ORB – CORBA, COM, DCOM</td>
</tr>
<tr>
<td></td>
<td>iii. Object Request Brokers</td>
<td>iii. Service Discovery – UDDI</td>
</tr>
<tr>
<td></td>
<td>v. Service Discovery and Description</td>
<td></td>
</tr>
<tr>
<td>Data Integration</td>
<td>i. Data exchange and transformation</td>
<td>i. Character encoding for information interchange – ASCII, Unicode, UTF-8</td>
</tr>
<tr>
<td></td>
<td>ii. Data exchange format and classification</td>
<td>ii. Data description – RDF, XML, XNAL, XCIL, XCRL</td>
</tr>
<tr>
<td></td>
<td>iii. Data integration meta language</td>
<td>iii. Data exchange and transformation – XMI, XSLT, ISO 8601 for data element and interchange format</td>
</tr>
<tr>
<td></td>
<td>iv. Interoperable character set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Extract, transform and load</td>
<td>iv. Data exchange formats – UN/EDIFACT, EDI, XML/EDI,</td>
</tr>
</tbody>
</table>
2.1.3. Distributed or Service-Orientated Architectures Service Components

For specifications by which Service Components are built, exchanged, and deployed across Distributed or Service-Orientated Architectures Table III is the reference framework.

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Service Component</th>
<th>Service Component Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation/ User Interface</td>
<td>i. Static Display</td>
<td>i. Static Display - Examples include HTML, PDF</td>
</tr>
<tr>
<td></td>
<td>ii. Dynamic / Server-Side Display</td>
<td>ii. Dynamic / Server-Side Display - Examples include JSP, ASP, ASP.Net</td>
</tr>
<tr>
<td></td>
<td>iii. Content Rendering</td>
<td>iii. Content Rendering - Examples include DHTML, XHTML, CSS, X3D</td>
</tr>
<tr>
<td></td>
<td>iv. Wireless / Mobile / Voice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. User Personalization</td>
<td></td>
</tr>
</tbody>
</table>

| External Integration | i. Service interface with external gateways (payment mechanisms, external agency, government gateway) | i. Banking integration – SWIFT |
| | ii. Tanzania Inter-bank Settlement System - TISS | |
| Business Service Component | i. Lines of Business Application Business Logic | i. Application business logic:
ii. Platform Independent -EJB, C++, JavaScript
iii. Platform Dependent -VB, VB.NET, C#, VB Script |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ii. Web Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Common Utilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Reusable Components</td>
<td></td>
</tr>
<tr>
<td>Data Management</td>
<td>i. Database Connectivity</td>
<td>i. Data exchange -XMI, XQuery, SOAP, ebXML, RDF, WSUI</td>
</tr>
<tr>
<td></td>
<td>ii. Data Access Objects/ORM</td>
<td>ii. Database Connectivity - DBC, ODBC, ADO, OLE/DB, DAO, DB2 Connector</td>
</tr>
<tr>
<td></td>
<td>iii. Data Validation, Cleansing / De-duplication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Data Backup and Archival</td>
<td></td>
</tr>
<tr>
<td>BI and Reporting</td>
<td>i. BI Tools and Standards</td>
<td>i. Reporting and Analysis - OLAP, XBRL, JOI.AP, XML for analysis</td>
</tr>
<tr>
<td></td>
<td>ii. Reporting Tools and Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Search Technology</td>
<td></td>
</tr>
<tr>
<td>Security Management</td>
<td>i. Access Management</td>
<td>i. Access management - Support for OS, App server, DBMS, IDM and directory service standards, password encryption during storage and transmission</td>
</tr>
<tr>
<td></td>
<td>ii. Anti-Spam / Anti-Virus</td>
<td>ii. Digital Signatures - Secure hash algorithms, authentication, message integrity, non repudiation</td>
</tr>
<tr>
<td></td>
<td>iii. Desktop and Enterprise Firewall</td>
<td>iii. Email Security - S/MIMEv3</td>
</tr>
<tr>
<td></td>
<td>iv. Identity, Authentication, authorization and privacy</td>
<td>iv. Encryption Algorithm - DES, triple DES</td>
</tr>
<tr>
<td></td>
<td>v. Single-Sign On / Identity Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Email Security</td>
<td>vi. Enterprise Firewall - Support various layers of TCP/IP protocol stack, support for OS, network protocols, data transport, electronic mail systems and app technologies standards</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>vii.</td>
<td>IP Security</td>
<td>vii. Identity , Authentication , authorization and privacy - SAMLv1.1,X.509 for identity certificates,</td>
</tr>
<tr>
<td>viii.</td>
<td>Public Key Technology</td>
<td>viii. Identity management - Support for OS, App server, DBMS, IDM and directory service standards, password encryption standards for storage and transmission</td>
</tr>
<tr>
<td>ix.</td>
<td>Intrusion Detection and Prevention</td>
<td>viii. IP security - IPSec</td>
</tr>
<tr>
<td>x.</td>
<td>Proxy Servers / Directory Services</td>
<td>ix. Proxy server -Compatible with LDAPv3, able to integrate with adopted standards for directory services</td>
</tr>
<tr>
<td>xii.</td>
<td>Secured Transport</td>
<td>xi. Secure transport -TLS/SSL</td>
</tr>
<tr>
<td>xiv.</td>
<td>Electronic Finger Printing</td>
<td></td>
</tr>
</tbody>
</table>
2.1.4. Delivery and Support Platforms

For specifications relating to delivery and support platforms, infrastructure capabilities and hardware requirements to support the construction, maintenance, and availability of a Service Component or capabilities, Table IV is the reference framework.

Table IV: Delivery and support platforms, infrastructure capabilities and hardware requirements.

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Service Component</th>
<th>Service Component Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database/Storage</td>
<td>i. Structured Data Storage</td>
<td>i. Structured data storage (DBMS) - DBMS should provide support for basic properties of a database transaction - atomicity, consistency, isolation, durability, support for data security, built-in audit, JDBC, ODBC, web service standards, transactional and analytical data should be in separate data store e.g. DB2, Oracle, SQL Server, Postgress SQL, Sybase</td>
</tr>
<tr>
<td></td>
<td>ii. Unstructured Data Storage</td>
<td>ii. Unstructured data storage - Content server, GIS server</td>
</tr>
<tr>
<td></td>
<td>iii. Storage Devices</td>
<td>iii. Storage devices -NAS, SAN</td>
</tr>
<tr>
<td>Platform and Delivery Servers</td>
<td>i. Web Servers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Application Servers</td>
<td>i. Wireless / Mobile -J2me</td>
</tr>
<tr>
<td></td>
<td>iii. Portal Servers</td>
<td>ii. Platform Independent -JEE, Linux, Eclipse</td>
</tr>
<tr>
<td></td>
<td>iv. Content Servers</td>
<td>iii. Platform Dependent - Windows, .NET, Mac OS</td>
</tr>
<tr>
<td></td>
<td>v. Media Servers</td>
<td>iv. Web Servers -Apache, IIS</td>
</tr>
<tr>
<td></td>
<td>vi. Desktop OS</td>
<td>v. Media Servers -Windows.media service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>viii.Content Server -Alfresco,</td>
</tr>
</tbody>
</table>
| Hardware Infrastructure | i. Servers / Computers
ii. Embedded Technology Devices
iii. Peripherals
iv. Wide Area Network
v. Local Area Network
vi. Network Devices / Standards | i. Servers / Computers - Enterprise server, mainframe
i. Embedded Technology Devices - RAM, RAID, microprocessor
ii. Peripherals - Printer, scanner, fax, cameras
iv. Wide Area Network (WAN) - Frame Relay, DSL, Metro Ethernet, ATM
v. Local Area Network (LAN) - Ethernet, VLAN
vi. Network Devices / Standards - Hub, switch, router, gateway, NIC, ISDN, Ti/T3, DSL, firewall |
| Software Engineering | i. Modelling process, application and data design
ii. Integrated Development Environment
iii. Application Development Framework
iv. Programming language for Application Development
v. Testing Tools
vi. Configuration Management Software | i. Modelling process, application and data design - BPMN for process modelling, BPEI4WS for web services, ERD for data modelling, UML 2 and above for app modelling, XML schema v1.o, WML V2.0
ii. Integrated Development Environment - RAD, Visual Studio, Eclipse, Net beans, JDeveloper
iii. Application Development Framework - Use of enterprise framework for app development, support for reuse of existing components and services, provide support for creating web services |
| vii. Commercial Off The Shelf (COTS) Software | iv. Programming language for Application Development - Language should allow for code portability, code collaboration, browser compatibility, should be compatible with the app development framework adopted

v. Testing Tools - Tools to be selected for functional testing, usability testing, performance, load and stress testing, security testing, reliability testing, regression testing

vi. Configuration Management Software - version control, defect tracking, issue tracking, change management, release management, requirement management and traceability

vii. COTS Software - applications should support open standards and other industry standards that promote interoperability with other products/vendors, access to training, allow parameterization and customization for local needs |
2.2. eGovernment Infrastructure Architecture Standards

2.2.1. Table V provides principle under which the eGovernment Infrastructure Architecture is designed. Institutional infrastructure architecture component of enterprise architectures should also be designed basing on this principle (There is an example in the Appendix).

Table V: Infrastructure Architecture Design Principle

<table>
<thead>
<tr>
<th>Principle</th>
<th>Infrastructure resilience and scalability</th>
</tr>
</thead>
</table>
| Rationale | i. Resilience entails availability, archival and backup.
| | ii. Scalability is required to support the overall SLA requirements. This involves scalability, availability & performance issues. |
| Implications | i. **Scalability:** Technology standards chosen will meet the changing and growing Public Institution needs and requirements and the applications and technologies will essentially scale up, to adapt and respond to such requirement changes and demand fluctuations. Server, storage and network capacities must handle user, application and data loads.
| | ii. **Availability:** The technology infrastructure will exhibit no single point of failure.
| | iii. **Archival and Backup:** The infrastructure will have data and source spanning across multi years. The archival and backup policy and mechanism will address the archival and backup requirement of the system and be aligned with the regulatory requirements.
| | iv. The system infrastructure will be architected considering failover requirements and ensure, a single server or network link failure does not bring down the entire system (although e.g. performance may degrade).
| | v. The system will handle every request and yield a response and handle error and exception conditions effectively.
| | vi. In the event of failures or crashes, recovery of transactions and data will be possible.
| | vii. The platform solution will support effective disaster recovery.
| | viii. Monitoring of systems health at regular intervals will be possible. Use of central system, monitoring tool would be required to gauge the health of the system all time and monitor against the pre-defined SLA.

2.2.2. The following are standards for server infrastructure:

i. Server Infrastructure has to be used to store Public Institutions data and provide crucial ICT Services to end users.

ii. Select well known hardware manufacturers/vendors that provide relevant technical support, warranty on hardware failures and are continually ensuring that equipment is tested for full compatibility with well-known operating systems.

iii. Implement server management software tools that can assist with management and troubleshooting of server hardware and software. The outcome is a reduced cost of server infrastructure deployment and associated downtime.

2.2.3. Implement a centralized management of authentication, group policy management and patch management.

2.2.4. Ensure that all workstations on the network have the fundamental tools for self-protection, including: personal firewall, anti-spyware/malware protection, disk-based data encryption, basic security reporting.

2.2.5. In terms of network infrastructure and connectivity, ensure that high quality, reliable, scalable and measurable network connectivity is available at all sites. Mission critical sites have to be engineered for fault tolerance. This implies that in mission critical sites such as Server Rooms or Computer Rooms networks will be configured to ensure no single point of failure.

2.2.6. Ensure that the network is planned for and provides Quality of Service (QoS) to support the on-going convergence of Voice over IP (VoIP), data and wireless technology.

2.2.7. Maintain accurate and up to date network topology diagrams and documentation. Primarily, the documentation is required for network issue isolation and troubleshooting. Additionally, when preparing for growth, infrastructure upgrades, or architectural redesign requires a comprehensive understanding of the current network topology.

2.2.8. Make use of sound design principles, open standards and long range planning for core network services such as the Directory Services, Domain Name Services (DNS) and IP addressing (using Dynamic Host Configuration Protocol (DHCP) in a structured manner. These require careful consideration not only during the network design but also during physical implementation.
These services will enforce the ICT policy, facilitate access and securing of the ICT resources on the network and provide audit logs for reconstructing events etc.

2.2.9. Shift towards pooling the storage infrastructure as the servers themselves are consolidated. By making use of Storage Area Networks (SANs) and Network Attached Storage (NAS) technologies over the current Direct Attached Storage Devices (DASD) currently in Use and coupled with a more centralized backup platform there will be:
 i. Greater utilization of storage
 ii. Improved backup and restoration of data Easier storage administration
 iii. Lower cost per megabyte
 iv. Greater consistency in stewardship

2.2.10. For security infrastructure and authentication standards refer to *eGovernment Security Architecture - Standards and Technical Guidelines (eGA/EXT/ISA/001)* for additional details.

2.2.11. Public Institutions should have knowledgeable and appropriately skilled human resources accountable for its on-going ICT operations, management, maintenance, maturity and evolution. Appendix – *Illustration No. 1 ICT Organisation Capability* provides the generic list of required ICT capabilities in a Public Institution.

2.2.12. An achievement of high quality infrastructure services depends on the establishment of appropriate service level targets with service providers and holding the providers accountable to these targets.
 a) Make sure that every vendor provides a Service Level Agreement (SLA) and measurement tools are established to ensure SLAs can be monitored.
 b) Ensure that vendors have the capability to measure and report network performance (Local as well as wide-area / Internet / etc.) In the case of network management systems,

2.2.13. A vendor escalation process should be in place to escalate issues that are not resolved by the vendor in a timely manner as committed.
2.2.14. Maintain vendor performance records to support decision making whilst renewing or terminating vendor contracts. Vendor and Service provider performance metrics include but not limited to:
 a) Deliveries and Responsibilities
 b) Timing of Service
 c) Quality of Service and Products
 d) Repair or maintenance and Warranty

2.3. eGovernment Infrastructure Architecture Technical Guidelines

2.3.1. With respect to Server Infrastructure, run the latest version of the server operating system. In addition to providing additional features and functionality, latest versions will improve overall security of the server’s data and services.

2.3.2. Opt for open source or commercial alternatives when necessary as choices for Centralized management of authentication, group policy management and patch management.

2.3.3. Implement Information and Application Access Anywhere. This can be done by deploying role-based configurations. Virtual Machines (VMs) can be used for users, independent of hardware and OS. VMs provide seamless migration for mobile computing, enable personalized applications and computing environments anywhere and provide shared server-based computing for task workers with centrally stored data.

2.3.4. Consider lowering the cost of ownership and improve reliability by moving towards standardization of both the hardware employed as well as software desktop image (consisting of the operating system, and suite of commonly used applications). This standardization, coupled with the greater use of management tools (such as Microsoft System Management Server, Dell KACE, LANDesk ad other) will greatly improve reliability, reduce downtime and risk.

2.3.5. While periodic replacement of the workstation population will allow for better total cost of ownership, mass wholesale replacement the entire workstation population will result in undesirable cost of ownership metrics. It is recommended that abide by best practices which dictates that 1/4 to 1/3 of the workstation population should be replace periodically so as to reduce overall maintenance cost and by extension the cost of ownership.

2.3.6. Consider replacing older PCs with new ones provide the benefit of improve operating system, improve security and improve speed and by extension improved productivity.
2.3.7. Consider remote support for workstations to increase productivity. This will facilitate implementation of software changes enterprise-wide, creating centralized desktop configuration database and monitoring drift from compliant, baseline configuration, and enabling enterprise-wide remote access, diagnosis, and repair.

2.3.8. Network Planning - The success of any infrastructure is measured in terms of how well the infrastructure planning choices match with the objectives of the functions of the Institution. Better networks require less maintenance consider upfront investments in planning, which will give assurance for smoother-running environment later on.

2.3.10. Public Institutions should adopt Information Technology Infrastructure Library (ITIL) which is a set of concepts and policies for managing ICT infrastructure, technology, development and operations. ITIL gives a detailed description of a number of important ICT practices with comprehensive checklists, tasks and procedures that any Public Institution can tailor to its needs.

2.3.11. Application Response Times – networks will provide application response times acceptable to support business needs and cost effective bandwidth to satisfy current and future networking needs of employees, citizens, external agencies and other users.

2.3.12. Track software inventory, versions, and physical placement. There are PC, Mac and LAN inventory packages which can be implemented by Public Institutions to control licensed software and will also do an audit of the software on a desktop/ server machines / LAN. Monitoring and tracking software licensing and compliance ensures that the software management processes are working effectively and that unlicensed / illegal software applications are not being used. In addition to this, tracking what software is used and how often it is used will assist Public Institutions to monitor licensing compliance and promote sharing and optimum utilization of licensed software. It is recommended that Public Institutions make use of widely available tools for tracking and recording workstation inventory.
2.3.13. Implement active directory restrictions to prevent the installation of unauthorized software. Introducing copied and unlicensed software into the computing environment can open the computer systems up to the risk of damage to your network through defective software or malicious code.

2.3.14. Public Institutions should migrate towards new technologies such as Microsoft Windows 8 and above since it offers ICT administrators an increased control over user activities.

2.3.15. Consider monitoring and reviewing of supplier services to ensure that all terms and conditions of the agreements are being adhered to and that issues and problems arising in the event of non-compliance are managed properly.

2.3.16. Adopt a formalised ICT asset disposal and reuse process in accordance to regulatory requirements to achieve the following:
 i. Gain maximum value from the equipment through compliant and safe reuse, redeployment and disposal options.
 ii. Ensure the complete destruction of data or hardware under maximum security.

2.3.17. Adopt enterprise licensing models for their application portfolio and leverage on Government licensing agreements to reduce total cost of ownership. Only suitably licensed software may be used in all Public Institutions.

2.3.18. Public Institutions will ensure compliancy to their Acceptable ICT Usage Policy in line with their ICT Policy.

2.3.19. Public Institutions shall adhere to the procurement processes for the acquisition, development and maintenance of all ICT equipment and software in line with institutional ICT Policy and ICT acquisition procedures.

2.3.20. Public Institutions will develop their **ICT Acquisition, Development and Maintenance Procedures** as guided by “Creation of ICT Acquisition, Development and Maintenance Procedure - Technical Guide (eGA/EXT/IRA/003) document.

2.3.21. For managing ICT infrastructure, technology, development and operations adhere to Institutional ICT Acquisition, Development and Maintenance Procedures.

2.3.23. To develop ICT Service Management Procedures, as guided by “Creation of ICT Service Management Procedures – Technical Guide (eGA/EXT/IRA/002)” document, Public Institutions should consider developing ICT service support and delivery within the organisation to ensure that the ICT end user can fully leverage on the technological platform. The services that may be considered include but is not limited to:

i. ICT asset management – to have an inventory of all ICT assets and to manage the life cycle of the ICT assets.

ii. Incident management - to restore Public Institutions normal service as quickly as possible, and to minimize the adverse impact on business operations.

iii. Service request management - to enable ICT users to request and receive standard services within a predefine time frame.

iv. Helpdesk management – to provide a standardize framework for registering and resolving reported ICT issues.

v. Change management - to ensure that standardized methods are used for the efficient and prompt handling of all changes, changes are recorded in a Configuration Management System and that overall business risk is optimized.

vi. Problem management - to prevent problems and resulting incidents from happening, to eliminate recurring incidents and to minimize the impact of incidents that cannot be prevented.

vii. Capacity management - to provide a point of focus and management for all capacity and performance-related issues, relating to both services and resources, and to match the capacity of ICT to the agreed business demands.

viii. Configuration management – to ensure that all hardware and software are configured in line to leading practices and appropriately hardened.
ix. Availability management – to ensure that the ICT systems meet the availability requirements of the Public Institutions through the adoption of appropriate disaster recovery mechanisms.

x. Release management - to ensure that Public Institutions include the appropriate checks and controls prior to include new hardware or software within the production environment.

xi. IT service continuity management – to have the appropriate redundancies in place in terms of resources in view to provide a round the clock service to the Public Institutions.

xii. Service catalogue and service management – to assist the ICT team in selecting the ICT services that would be operated based on the business needs and the technical capabilities of the ICT team.

2.3.24. Public Institutions shall leverage on existing whole of Government e-Government initiatives such as Government Network (GOVNET), Government Mailing Systems (GMS), Government Data Centre (GDC) and Government Mobile Platforms.

2.3.25. The Government’s aim is to have an electronic register of ICT equipment:

i. In the transition period each Public Institution must have an ICT equipment registry as shown on the Appendix A of the Public Service circular No 5, 2009. Therefore, Government institutions are required to hold correct information of their ICT equipment.

2.3.26. Public Institutions will consider the following general requirements with regards to the use of mobile data storage:

i. The Correct Use of Mobile Data Storage Device

a. Public servants should be educated regarding the safe use of ICT before commence using the devices.

b. Public servants must use the mobile data storage devices only on Government work. However, it is not permitted to mix official information and private information in the same device.

c. Public documents on transit via flash disk, portable hard drives, phones, iPOD etc. must be deleted from these devices once the transfer process is completed.
d. Public servants must not use CD ROM, DVD, and back up tapes for unintentional transfer or storage of information for future uses.

e. Public offices when procure mobile data storage devices must adhere to the directives from the President’s Office, Public Service Management.

ii. Registration of Mobile Data Storage Devices

a. Mobile Data storage devices should be registered in institution’s ICT asset registry with the user information as directed by Public Service circular No 5 of the year 2009.

b. Transfer of mobile data storage devices must adhere to the regulations guiding the issuing of office equipment.

iii. Storage/Sage Keeping of Mobile Data Storage

a. Mobile data storage devices must be stored in the Government Offices by the Government’s guides for safe keeping of information and equipment. If a public servant requires to take the storage devices outside the Government Office he/she must inform the authorised person.

b. When the mobile data storage device is lost, the loss must be reported to the authority immediately for necessary actions to be taken.

iv. Destruction/Decommissioning of Mobile Data Storage Devices

a. When the use of mobile data storage device (when the device becomes obsolete), the device must be sent to the Directorate of Records and Archives Management (DRAM) for destruction.

b. It is forbidden to sell, issue as a gift, or to switch the ownership of Government’s mobile data storage devices.

2.3.27. Public Institutions will comply with Government Data Centers Guidelines and Procedures (eGA/EXT/IRA/002) while using Data Center services provided by eGA.

2.3.28. Further references (Templates and Technical Guides) related to e-Government Infrastructure Architecture will be developed from time to time
3. IMPLEMENTATION, REVIEW AND ENFORCEMENT

3.1 This document takes effect from December, 2017.

3.2 This document is subject to review at least once every three years.

3.3 Any exceptions to compliance with this document should be approved in writing by Chief Executive Officer (CEO) of e-Government Agency.

4. GLOSSARY AND ACRONYMS

4.1 Glossary
None

4.2 Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP</td>
<td>Business Continuity Planning</td>
</tr>
<tr>
<td>DAS</td>
<td>Data Acquisition System</td>
</tr>
<tr>
<td>DASD</td>
<td>Direct Attached Storage Devices</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DMZ</td>
<td>Demilitarized Zone</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Services</td>
</tr>
<tr>
<td>DR</td>
<td>Disaster Recovery</td>
</tr>
<tr>
<td>DRP</td>
<td>Disaster Recovery Planning</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>NAS</td>
<td>Network Attached Storage</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage Area Network</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>TRM</td>
<td>Technical Reference Model</td>
</tr>
<tr>
<td>VLAN</td>
<td>Virtual Local Area Network</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>

5. RELATED DOCUMENTS

5.1. eGovernment Guideline 2017 by President’s Office – Public Service Management (PO-PSM)

5.2. eGovernment Architecture Vision - Standards and Technical Guidelines (eGA/EXT/AVS/001)

5.3. eGovernment Interoperability Framework - Standards and Technical Guidelines (eGA/EXT/GIF/001)

5.4. eGovernment Business Architecture - Standards and Technical Guidelines (eGA/EXT/BSA/001)

5.5. eGovernment Application Architecture - Standards and Technical Guidelines (eGA/EXT/APA/001)

5.6. eGovernment Information Architecture - Standards and Technical Guidelines (eGA/EXT/IFA/001)

5.7. eGovernment Integration Architecture - Standards and Technical Guidelines (eGA/EXT/ITA/001)

5.8. eGovernment Security Architecture - Standards and Technical Guidelines (eGA/EXT/ISA/001)

5.9. eGovernment Architecture Processes and Governance - Standards and Technical Guidelines (eGA/EXT/PAG/001)
6. DOCUMENT CONTROL

<table>
<thead>
<tr>
<th>Version</th>
<th>Name</th>
<th>Comment</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver. 1.0</td>
<td>eGA</td>
<td>Creation of Document</td>
<td>February 2016</td>
</tr>
<tr>
<td>Ver. 1.1</td>
<td>eGA</td>
<td>Alignment with eGovernment Guideline 2017</td>
<td>December 2017</td>
</tr>
</tbody>
</table>
APPENDIX

Illustration No.1 ICT Organisation Capability

Table A1 is a generic list of ICT organizational capabilities required for any Public Institution:

Table A1: ICT organizational capabilities required for any Public Institution

<table>
<thead>
<tr>
<th>ICT Organisation Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICT Strategy and Planning</td>
<td>Capability to execute ICT strategy, Enterprise architecture (technical, application, and process), and budgeting/resource e planning.</td>
</tr>
<tr>
<td>IT Governance</td>
<td>Ability to develop and execute value management, performance management, project management, and ICT policy/procedures.</td>
</tr>
<tr>
<td>Risk Management</td>
<td>The ability to develop and execute proper security, ICT continuity planning, and compliance with legislation or standards</td>
</tr>
<tr>
<td>Applications Management</td>
<td>The capability to execute on application development, procurement, maintenance, quality, and data management.</td>
</tr>
<tr>
<td>Service Management</td>
<td>Includes the ability to develop and execute proper service planning, monitoring, delivery, and support for networks, storage, applications, etc.</td>
</tr>
<tr>
<td>IT Resource Management</td>
<td>Includes the ability to develop and execute on talent management, vendor management, outsourcer management, and ICT knowledge management.</td>
</tr>
<tr>
<td>ICT Infrastructure Management</td>
<td>Include ability to design, deploy, operate and manage the ICT Infrastructure efficiently and effectively, it includes the overall Server, Storage, Network and Security Infrastructure explicitly.</td>
</tr>
</tbody>
</table>
Illustration No.2 Typical Infrastructure Architecture

The diagram in Figure AI illustrates a typical infrastructure architecture that will be prepared by Public Institution by taking into consideration Client Layer, Presentation Layer, Integration Layer, Business Logic Layer, Enterprise Information System Tier/Data Tier.

Figure AI: Typical Infrastructure Architecture